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General background

e \We target safety critical reactive systems with concurrent
interacting agents/parts

® To prove safety one can use testing, formal methods, etc.
e We choose to focus on formal descriptions of temporal relationships

e And Clock Constraint Specification Language (CCSL) is our current
method



Clock Constraint Specification Language [11]

Logical clocks are (infinite) sequences of event occurrences (ticks)

Constraints use clocks as variables and define which sequences are
allowed

A specification expresses sequences that satisfy all constraints

e A schedule is an assignment of clock ticks to steps

Problems of interest:
m Existence of schedules
m Finiteness of representation
m Clock liveness



Examples of constraints (1/2)

Sampling constraint a = b sampled on c.
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Examples of constraints (2/2)

Precedence constraint a < b.
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Comparison with other methods

® Reactive synchronous languages (Lustre [6], Esterel [3], Prelude [9]):

m Synchronous assumption
m Inspiration for CCSL and multiform logical time

e Timed Automata [2]:

m Event synchronization
m Uniform time

e State-based formal methods, like Event-B [1], ASM [5], Alloy [10]



Why extend to real-time?

CCSL does support chronological clocks

But not really real-time relations
We can define them by discretizing, but it is:

m |mprecise
m Blows up the state space

Thus, we add syntactic and semantic extension to the language



New constraints

® Real-time delay:
out = delay arg by [1s, 25]
e Cumulative periodic:
out = repeat each bs relative error + 1% offset 10s
® Absolute periodic:

out = repeat each 5s absolute error + 1% offset 10s



lllustration on PCV mode [4]:

PEEP




llustration on PCV mode [4]: mapping to clocks
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llustration on PCV mode [4]: pure CCSL
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llustration on PCV mode [4]: pure CCSL

PEEP

— L Time
1

1 1 I 1 N
1 1 ' |
(] [ | 1 .
* o T 1 —® T Inspiration start
\‘k ! /\i i | f\\k
1

Expiration start

Trigger start

lk<

Inhalation

Reference clock (0.1s)



llustration on PCV mode [4]: pure CCSL

Pressure

Pinsp | +eseee e — L

Trigger window Trigger window

PEEP b——--- - oerenaeg®

Time

Inspiration start

e |- -F -

Expiration start

. ....7\.(. -
ol @E === -

Trigger start

4 Inhalation

Reference clock (0.1s)

n ticks ~ m ticks n ticks 7 ticks ? n ticks
7 ticks



llustration on PCV mode [4]: pure CCSL
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lllustration on PCV mode [4]: with RTCCSL
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PCV code

pcv_mode (mode: struct, sensor: struct) where { //FUN.19
IE in [1, 4]; //PER.5, includes PER.13
RR in [4,501/1 min; //PER./, 4ncludes PER.12
trigger_window_delay = 0.7s; //CONT.4 5
trigger_window.start =< fastest(sensor.inhale, trigger_window.finish)
< next inspiration.start; //FUN.21
between(trigger_window.start, trigger_window.finish, sensor.inhale)
P A
expiration = inspiration delayed by 1/RR/(1+IE); //FUN.20

trigger_window = {
start < finish;
start = .expiration delayed by trigger_window_delay; //CONT.45
finish = .inspiration delayed by 1/RR; //FUN.20
}s
inspiration_condition = sensor.inhale || trigger_window.finish
\ ((sensor.inhale || mode.pcv.finish) sampled on trigger_window.finish)
\ (mode.pcv.finish sampled on sensor.inhale); //CONT.25
next inspiration = first sampled inspiration_condition on trigger_window.finish;

} assert {

trigger_window.finish < expiration delayed by IE/RR/(1+IE); //FUN.20
inspiration alternates expiration;



PCV code: assumption and assertion

pcv_mode (mode: struct, sensor: struct) where { //FUN.19
IE in [1, 4]; //PER.5, includes PER.13
RR in [4,501/1 min; //PER./, 4ncludes PER.12
trigger_window_delay = 0.7s; //CONT./5
trigger_window.start =< fastest (sensor.inhale, trigger_window.finish)
< next inspiration.start; //FUN.Z21
between (trigger_window.start, trigger_window.finish, sensor.inhale)
P A
expiration = inspiration delayed by 1/RR/(1+IE); //FUN.20

trigger_window = {
start < finish;
start = .expiration delayed by trigger_window_delay; //CONT.45
finish = .inspiration delayed by 1/RR; //FUN.20
}s
inspiration_condition = sensor.inhale || trigger_window.finish
\ ((sensor.inhale || mode.pcv.finish) sampled on trigger_window.finish)
\ (mode.pcv.finish sampled on sensor.inhale); //CONT.25
next inspiration = first sampled inspiration_condition on trigger_window.finish;

} assert {

trigger_window.finish < expiration delayed by IE/RR/(1+IE); //FUN.Z20
inspiration alternates expiration;



PCV code: parameters

pcv_mode (mode: struct, sensor: struct) where { //FUN.19
IE in [1, 4]; //PER.5, includes PER.13
RR in [4,501/1 min; //PER./, 4ncludes PER.12
trigger_window_delay = 0.7s; //CONT./5
trigger_window.start =< fastest(sensor.inhale, trigger_window.finish)
< next inspiration.start; //FUN.21
between(trigger_window.start, trigger_window.finish, sensor.inhale)
P A
expiration = inspiration delayed by 1/RR/(1+IE); //FUN.20

trigger_window = {
start < finish;
start = .expiration delayed by trigger_window_delay; //CONT.45
finish = .inspiration delayed by 1/RR; //FUN.20
}s
inspiration_condition = sensor.inhale || trigger_window.finish
\ ((sensor.inhale || mode.pcv.finish) sampled on trigger_window.finish)
\ (mode.pcv.finish sampled on sensor.inhale); //CONT.25
next inspiration = first sampled inspiration_condition on trigger_window.finish;

} assert {

trigger_window.finish < expiration delayed by IE/RR/(1+IE); //FUN.20
inspiration alternates expiration;



PCV code: purely logical

pcv_mode (mode: struct, sensor: struct) where { //FUN.19

IE in [1, 4]; //PER.5, includes PER.13

RR in [4,501/1 min; //PER./, 4ncludes PER.12

trigger_window_delay = 0.7s; //CONT.4 5

trigger_window.start =< fastest (sensor.inhale, trigger_window.finish)

< next inspiration.start; //FUN.Z21

between (trigger_window.start, trigger_window.finish, sensor.inhale)
A

expiration = inspiration delayed by 1/RR/(1+IE); //FUN.20

trigger_window = {
start < finish;
start = .expiration delayed by trigger_window_delay; //CONT.45
finish = .inspiration delayed by 1/RR; //FUN.20
};
inspiration_condition = sensor.inhale || trigger_window.finish
\ ((sensor.inhale || mode.pcv.finish) sampled on trigger_window.finish)
\ (mode.pcv.finish sampled on sensor.inhale); //CONT.25
next inspiration = first sampled inspiration_condition on trigger_window.finish;

} assert {

trigger_window.finish < expiration delayed by IE/RR/(1+IE); //FUN.Z20
inspiration alternates expiration;



PCV code: real-time constraints

pcv_mode (mode: struct, sensor: struct) where { //FUN.19
IE in [1, 4]; //PER.5, includes PER.13
RR in [4,501/1 min; //PER./, 4ncludes PER.12
trigger_window_delay = 0.7s; //CONT.4 5
trigger_window.start =< fastest(sensor.inhale, trigger_window.finish)
< next inspiration.start; //FUN.21
between(trigger_window.start, trigger_window.finish, sensor.inhale)
P A
expiration = inspiration delayed by 1/RR/(1+IE); //FUN.20

trigger_window = {
start < finish;
start = .expiration delayed by trigger_window_delay; //CONT.45
finish = .inspiration delayed by 1/RR; //FUN.Z20
}s
inspiration_condition = sensor.inhale || trigger_window.finish
\ ((sensor.inhale || mode.pcv.finish) sampled on trigger_window.finish)
\ (mode.pcv.finish sampled on sensor.inhale); //CONT.25
next inspiration = first sampled inspiration_condition on trigger_window.finish;

} assert {

trigger_window.finish < expiration delayed by IE/RR/(1+IE); //FUN.Z20
inspiration alternates expiration;



MLV specification summary
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Lessons from the modelling

e Going from natural language into formal specification helps remove
ambiguities
e Examples of ambiguities:

m Reaction latencies for:

» |nhalation
» Valves
> Fail-safe

m Precision

® Parametric verification is really desired



Existing CCSL tooling

e TimeSquare [8]:
m Exhaustive state model checking
m Simulation
m Observer code generation

e MyCCSL [7]:

Existence of schedules

Clock liveness

LTL model checking

Uses SMT



RTCCSL tooling

e Simulation:

m Can produce or check a schedule/trace for a specification
m Can use different strategies to choose the steps in schedules
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Figure 3: Generated schedule for PCV mode

e Symbolic:
m Inductive reasoning
checking assertions

about existence of certain type of infinite schedules,
and assumptions, with some parametric verification

m (WIP) state-based abstract interpretation to check finiteness of representation



Conclusion

Language extensions with new syntax and semantics

Described MLV use case in this language

Both another iteration on language

And new perspective on the use case

Implemented simulation and the first symbolic tool

Working on a tool that uses abstract interpretation



Questions?
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Bonus slides



Refinement

e The MLV specification can be made of 2 parts: high-level and
low-level requirements

e High-level would contain the requirements + precision

e |ow-level will refine the behaviour using sampling and logical delays
on real-time cumulative clock. This corresponds closer to how the
actual system will work

® The high-level specification should include low-level one



General framework

A~ (AN SL) ~ Su ~ Psagety
where
e A is for assumptions constraints
e S for low-level specification
e Sy for high-level
® Psasety is for general patient safety property

® ~ is a simulation relation, meaning that solutions to the left are all
present in the right specification
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