Real-Time CCSL: Application to the Mechanical
Lung Ventilator

Pavlo Tokariev Frédéric Mallet

Team KAIROS
Université Céte d'Azur, Inria, CNRS, i3S
Sophia Antipolis, France

Wed, 26 June 2024, ABZ2024

UNIVERSITE s - @
COTE DAZUR -2-. R Leeia— odei3s

galitt
Tratermicé

Content

1. Preliminaries

2. Why extend CCSL with real-time
3. MLV using RTCCSL

4. Tooling and future work

General background

e \We target safety critical reactive systems with concurrent
interacting agents/parts

® To prove safety one can use testing, formal methods, etc.
e We choose to focus on formal descriptions of temporal relationships

e And Clock Constraint Specification Language (CCSL) is our current
method

Clock Constraint Specification Language [11]

Logical clocks are (infinite) sequences of event occurrences (ticks)

Constraints use clocks as variables and define which sequences are
allowed

A specification expresses sequences that satisfy all constraints

e A schedule is an assignment of clock ticks to steps

Problems of interest:
m Existence of schedules
m Finiteness of representation
m Clock liveness

Examples of constraints (1/2)

Sampling constraint a = b sampled on c.

abc V abc abc
abc
a
start — @ } ; ; / a
U abc V abc U } by fb2 b
abc abc LI N 2 .

(a) Finite automaton (b) Possible schedule

Examples of constraints (2/2)

Precedence constraint a < b.

_ ab _
ab ab
start H@/_\ -
_/
v ab v ab
ab ab

(a) Infinite automaton (unbounded integer counter)

da az

° . a

(b) Possible schedule

Comparison with other methods

® Reactive synchronous languages (Lustre [6], Esterel [3], Prelude [9]):

m Synchronous assumption
m Inspiration for CCSL and multiform logical time

e Timed Automata [2]:

m Event synchronization
m Uniform time

e State-based formal methods, like Event-B [1], ASM [5], Alloy [10]

Why extend to real-time?

CCSL does support chronological clocks

But not really real-time relations
We can define them by discretizing, but it is:

m |mprecise
m Blows up the state space

Thus, we add syntactic and semantic extension to the language

New constraints

® Real-time delay:
out = delay arg by [1s, 25]
e Cumulative periodic:
out = repeat each bs relative error + 1% offset 10s
® Absolute periodic:

out = repeat each 5s absolute error + 1% offset 10s

lllustration on PCV mode [4]:

PEEP

llustration on PCV mode [4]: mapping to clocks

PEEP

oc-|--F-<-=

Inhalation

1
1
1 I 1
: : : T Time
1 1
v 1 v e L
\ 4 ™ L ™ —® Inspiration start
N 3o 1
o o T Expiration start
1 1 1
v v i
L 2 L L Trigger start
1
v
L 4

llustration on PCV mode [4]: pure CCSL

PEEP

1

' 1 . ime

1 I 1

v 1 1 i

P4 — T T Inspiration start
/\\L 1 1 f\\P Expiration start
. o« T L 3 xpiration star

| | 1

N, N Ji

J Trigger start
1

Inhalation

llustration on PCV mode [4]: pure CCSL

PEEP

— L Time
1

1 1 I 1 N
1 1 ' |
(] [| 1 .
* o T 1 —® T Inspiration start
\‘k ! /\i i | f\\k
1

Expiration start

Trigger start

lk<

Inhalation

Reference clock (0.1s)

llustration on PCV mode [4]: pure CCSL

Pressure

Pinsp | +eseee e — L

Trigger window Trigger window

PEEP b——--- - oerenaeg®

Time

Inspiration start

e |- -F -

Expiration start

.7\.(. -
ol @E === -

Trigger start

4 Inhalation

Reference clock (0.1s)

n ticks ~ m ticks n ticks 7 ticks ? n ticks
7 ticks

llustration on PCV mode [4]: pure CCSL

Pressure

Pinsp | +eseee e — L

Trigger window Trigger window

PEEP b——----eroeruenns

1 [] 1 [1 1

L T : L — L Time

1 [| 1 [1 | 1

< L x 11 (D4 1 -
< T 8 ™ 1 T Inspiration start
\\L 1 /\\L 1 1 7?\\9

T |« . «— L e \ 4 Expiration start
: V : \'v |/: :

. & - . Trigger start

. Do [/ :

- A 4 Inhalation

: Reference clock (0.1s)

n ticks ~ m ticks n ticks 7 ticks ? n ticks
7 ticks

lllustration on PCV mode [4]: with RTCCSL

Pressure

Pingp |- e

Trigger window Trigger window

PEEP

Time

Inspiration start

..7|<__
e |- - F -

T & Expiration start
N N
& —e Trigger start
Do B 1
- Inhalation
e
1 IE 1 0.7s ?s 1
+iE)RR® 0.7s [ATIE)RR® (I+IE)RR ° (THIE)RR °

PCV code

pcv_mode (mode: struct, sensor: struct) where { //FUN.19
IE in [1, 4]; //PER.5, includes PER.13
RR in [4,501/1 min; //PER./, 4ncludes PER.12
trigger_window_delay = 0.7s; //CONT.4 5
trigger_window.start =< fastest(sensor.inhale, trigger_window.finish)
< next inspiration.start; //FUN.21
between(trigger_window.start, trigger_window.finish, sensor.inhale)
P A
expiration = inspiration delayed by 1/RR/(1+IE); //FUN.20

trigger_window = {
start < finish;
start = .expiration delayed by trigger_window_delay; //CONT.45
finish = .inspiration delayed by 1/RR; //FUN.20
}s
inspiration_condition = sensor.inhale || trigger_window.finish
\ ((sensor.inhale || mode.pcv.finish) sampled on trigger_window.finish)
\ (mode.pcv.finish sampled on sensor.inhale); //CONT.25
next inspiration = first sampled inspiration_condition on trigger_window.finish;

} assert {

trigger_window.finish < expiration delayed by IE/RR/(1+IE); //FUN.20
inspiration alternates expiration;

PCV code: assumption and assertion

pcv_mode (mode: struct, sensor: struct) where { //FUN.19
IE in [1, 4]; //PER.5, includes PER.13
RR in [4,501/1 min; //PER./, 4ncludes PER.12
trigger_window_delay = 0.7s; //CONT./5
trigger_window.start =< fastest (sensor.inhale, trigger_window.finish)
< next inspiration.start; //FUN.Z21
between (trigger_window.start, trigger_window.finish, sensor.inhale)
P A
expiration = inspiration delayed by 1/RR/(1+IE); //FUN.20

trigger_window = {
start < finish;
start = .expiration delayed by trigger_window_delay; //CONT.45
finish = .inspiration delayed by 1/RR; //FUN.20
}s
inspiration_condition = sensor.inhale || trigger_window.finish
\ ((sensor.inhale || mode.pcv.finish) sampled on trigger_window.finish)
\ (mode.pcv.finish sampled on sensor.inhale); //CONT.25
next inspiration = first sampled inspiration_condition on trigger_window.finish;

} assert {

trigger_window.finish < expiration delayed by IE/RR/(1+IE); //FUN.Z20
inspiration alternates expiration;

PCV code: parameters

pcv_mode (mode: struct, sensor: struct) where { //FUN.19
IE in [1, 4]; //PER.5, includes PER.13
RR in [4,501/1 min; //PER./, 4ncludes PER.12
trigger_window_delay = 0.7s; //CONT./5
trigger_window.start =< fastest(sensor.inhale, trigger_window.finish)
< next inspiration.start; //FUN.21
between(trigger_window.start, trigger_window.finish, sensor.inhale)
P A
expiration = inspiration delayed by 1/RR/(1+IE); //FUN.20

trigger_window = {
start < finish;
start = .expiration delayed by trigger_window_delay; //CONT.45
finish = .inspiration delayed by 1/RR; //FUN.20
}s
inspiration_condition = sensor.inhale || trigger_window.finish
\ ((sensor.inhale || mode.pcv.finish) sampled on trigger_window.finish)
\ (mode.pcv.finish sampled on sensor.inhale); //CONT.25
next inspiration = first sampled inspiration_condition on trigger_window.finish;

} assert {

trigger_window.finish < expiration delayed by IE/RR/(1+IE); //FUN.20
inspiration alternates expiration;

PCV code: purely logical

pcv_mode (mode: struct, sensor: struct) where { //FUN.19

IE in [1, 4]; //PER.5, includes PER.13

RR in [4,501/1 min; //PER./, 4ncludes PER.12

trigger_window_delay = 0.7s; //CONT.4 5

trigger_window.start =< fastest (sensor.inhale, trigger_window.finish)

< next inspiration.start; //FUN.Z21

between (trigger_window.start, trigger_window.finish, sensor.inhale)
A

expiration = inspiration delayed by 1/RR/(1+IE); //FUN.20

trigger_window = {
start < finish;
start = .expiration delayed by trigger_window_delay; //CONT.45
finish = .inspiration delayed by 1/RR; //FUN.20
};
inspiration_condition = sensor.inhale || trigger_window.finish
\ ((sensor.inhale || mode.pcv.finish) sampled on trigger_window.finish)
\ (mode.pcv.finish sampled on sensor.inhale); //CONT.25
next inspiration = first sampled inspiration_condition on trigger_window.finish;

} assert {

trigger_window.finish < expiration delayed by IE/RR/(1+IE); //FUN.Z20
inspiration alternates expiration;

PCV code: real-time constraints

pcv_mode (mode: struct, sensor: struct) where { //FUN.19
IE in [1, 4]; //PER.5, includes PER.13
RR in [4,501/1 min; //PER./, 4ncludes PER.12
trigger_window_delay = 0.7s; //CONT.4 5
trigger_window.start =< fastest(sensor.inhale, trigger_window.finish)
< next inspiration.start; //FUN.21
between(trigger_window.start, trigger_window.finish, sensor.inhale)
P A
expiration = inspiration delayed by 1/RR/(1+IE); //FUN.20

trigger_window = {
start < finish;
start = .expiration delayed by trigger_window_delay; //CONT.45
finish = .inspiration delayed by 1/RR; //FUN.Z20
}s
inspiration_condition = sensor.inhale || trigger_window.finish
\ ((sensor.inhale || mode.pcv.finish) sampled on trigger_window.finish)
\ (mode.pcv.finish sampled on sensor.inhale); //CONT.25
next inspiration = first sampled inspiration_condition on trigger_window.finish;

} assert {

trigger_window.finish < expiration delayed by IE/RR/(1+IE); //FUN.Z20
inspiration alternates expiration;

MLV specification summary

MLV

PCV

Modes

PSV

Fail-safety

—

Specification

o)
Environment —E
Valves

L]

Properties

L

Assumptions

Checks

Assertions

Double check

H.

Finiteness of representation

Clock liveness

Safety

Lessons from the modelling

e Going from natural language into formal specification helps remove
ambiguities
e Examples of ambiguities:

m Reaction latencies for:

» |nhalation
» Valves
> Fail-safe

m Precision

® Parametric verification is really desired

Existing CCSL tooling

e TimeSquare [8]:
m Exhaustive state model checking
m Simulation
m Observer code generation

e MyCCSL [7]:

Existence of schedules

Clock liveness

LTL model checking

Uses SMT

RTCCSL tooling

e Simulation:

m Can produce or check a schedule/trace for a specification
m Can use different strategies to choose the steps in schedules

expiration
inspiration
sensor.inhale
trigger.finish
trigger.start

—o—

»d A

—H—¢ < ¢ -

>
233.744.75.45.76.77.47.78.79.49.6 9.7 seconds

.,

.,
o

Y

Figure 3: Generated schedule for PCV mode

e Symbolic:
m Inductive reasoning
checking assertions

about existence of certain type of infinite schedules,
and assumptions, with some parametric verification

m (WIP) state-based abstract interpretation to check finiteness of representation

Conclusion

Language extensions with new syntax and semantics

Described MLV use case in this language

Both another iteration on language

And new perspective on the use case

Implemented simulation and the first symbolic tool

Working on a tool that uses abstract interpretation

Questions?

References |

[1]

2]

Jean-Raymond Abrial. Modeling in Event-B : system and software
engineering. eng. Cambridge ; New York : Cambridge University
Press, 2010. 1SBN: 978-0-521-89556-9. URL:
http://archive.org/details/modelingineventb0000abri
(visited on 05/30,/2024).

Rajeev Alur and David L. Dill. “A theory of timed automata”. en.
In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183-235.
1SSN: 0304-3975. DOI: 10/bn332s. URL: https://www.
sciencedirect.com/science/article/pii/0304397594900108
(visited on 12/07/2021).

http://archive.org/details/modelingineventb0000abri
https://doi.org/10/bn332s
https://www.sciencedirect.com/science/article/pii/0304397594900108
https://www.sciencedirect.com/science/article/pii/0304397594900108

References |l

3]

[4]

Gerard Berry and Jean-Paul Rigault. “Esterel: Towards a
synchronous and semantically sound high-level language for
real-time applications”. In: 1983.

Silvia Bonfanti and Angelo Gargantini. “The Mechanical Lung
Ventilator Case Study”. In: Rigorous State-Based Methods 10th
International Conference, ABZ 2024, Bergamo, lItaly, June 2528,
2024, Proceedings. Vol. 14759. Lecture Notes in Computer Science.
Springer, 2024.

References ||

[5]

[6]

Egon Borger. “The ASM Refinement Method”. en. In: Formal
Aspects of Computing 15.2 (Nov. 2003), pp. 237-257. ISSN:
1433-299X. DOI: 10.1007/s00165-003-0012-7. URL:
https://doi.org/10.1007/s00165-003-0012-7 (visited on
05/30/2024).

P. Caspi et al. “LUSTRE: A declarative language for programming
synchronous systems*”. In: 1987. URL:
https://www.semanticscholar.org/paper/LUSTRE),3A-A-
declarative-language-for-programming-Caspi-
Pilaud/893b9e21f01df1f14a922d2e4eb863bedechb25d2 (visited
on 12/13/2022).

https://doi.org/10.1007/s00165-003-0012-7
https://doi.org/10.1007/s00165-003-0012-7
https://www.semanticscholar.org/paper/LUSTRE%3A-A-declarative-language-for-programming-Caspi-Pilaud/893b9e21f01df1f14a922d2e4eb863be9ecb25d2
https://www.semanticscholar.org/paper/LUSTRE%3A-A-declarative-language-for-programming-Caspi-Pilaud/893b9e21f01df1f14a922d2e4eb863be9ecb25d2
https://www.semanticscholar.org/paper/LUSTRE%3A-A-declarative-language-for-programming-Caspi-Pilaud/893b9e21f01df1f14a922d2e4eb863be9ecb25d2

References |V

[7]

8]

Xiaohong Chen, Frédéric Mallet, and Xiaoshan Liu. “Formally
Verifying Sequence Diagrams for Safety Critical Systems”. en. In:
Dec. 2020. URL: https://hal.inria.fr/hal-03121933 (visited
on 12/07/2021).

Julien DeAntoni and Frédéric Mallet. “TimeSquare: Treat Your
Models with Logical Time". en. In: Objects, Models, Components,
Patterns. Ed. by David Hutchison et al. Vol. 7304. Series Title:
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 34-41. 1SBN: 978-3-642-30560-3
978-3-642-30561-0. DOI: 10.1007/978-3-642-30561-0_4. URL:
http://link.springer.com/10.1007/978-3-642-30561-0_4
(visited on 02/02/2022).

o &

https://hal.inria.fr/hal-03121933
https://doi.org/10.1007/978-3-642-30561-0_4
http://link.springer.com/10.1007/978-3-642-30561-0_4

References V

9]

[10]

[11]

Julien Forget et al. “A Multi-Periodic Synchronous Data-Flow
Language”. In: 11th IEEE High Assurance Systems Engineering
Symposium. Nanjing, China, Dec. 2008, pp. 251-260. URL:
https://hal.archives-ouvertes.fr/hal-00802695 (visited on
11/03/2022).

Daniel Jackson. Software Abstractions: Logic, Language, and
Analysis. The MIT Press, Jan. 2012. 1SBN: 978-0-262-01715-2.

Frédéric Mallet. “Clock constraint specification language: specifying
clock constraints with UML/MARTE". In: Innovations in Systems
and Software Engineering 4 (Oct. 2008), pp. 309-314. pOI:
10/dn4ptd.

https://hal.archives-ouvertes.fr/hal-00802695
https://doi.org/10/dn4ptd

Bonus slides

Refinement

e The MLV specification can be made of 2 parts: high-level and
low-level requirements

e High-level would contain the requirements + precision

e |ow-level will refine the behaviour using sampling and logical delays
on real-time cumulative clock. This corresponds closer to how the
actual system will work

® The high-level specification should include low-level one

General framework

A~ (AN SL) ~ Su ~ Psagety
where
e A is for assumptions constraints
e S for low-level specification
e Sy for high-level
® Psasety is for general patient safety property

® ~ is a simulation relation, meaning that solutions to the left are all
present in the right specification

	Preliminaries
	Why extend CCSL with real-time
	MLV using RTCCSL
	Tooling and future work
	References

