
FRETting and Formal Modelling:
A Mechanical Lung Ventilator

Marie Farrell Matt Luckcuck Rosemary Monahan Conor Reynolds Oisín Sheridan

Department of Computer Science, The University of Manchester, Manchester, UK

School of Computer Science, University of Nottingham, Nottingham, UK

Department of Computer Science, Maynooth University/Hamilton Institute, Maynooth, Ireland

27th of June 2024

FRETting and Formal Modelling 1/22



Introduction

Overview
▶ We describe a methodology that captures the requirements of the ABZ 2024 case study,

the Mechanical Lung Ventilator, using the Formal Requirements Eliciation Tool (FRET)
▶ Our workflow uses the requirements, written in FRET’s structured-natural requirements

language FRETISH, to guide the development of a formal model in Event-B.
▶ Our goal was to examine how formalising the requirements could uncover problems in the

requirements, thus improving the requirements set and helping with the construction of a
system model

FRETting and Formal Modelling 2/22



Mechanical Lung Ventilator: ABZ Case Study

Case Study Overview
▶ Many requirements in the documentation.
▶ Partitioned into

▶ Functional Requirements (FUN),
▶ Values and Ranges (PER),
▶ Sensors and Interfaces (INT),
▶ Alarm Requirements (SAV),
▶ GUI Requirements (GUI),
▶ Controller Requirements (CONT), and
▶ Alarms (AL).

▶ Some requirements have ‘child’ requirements; for
example, FUN6 is decomposed into FUN6_1–6.

▶ Requirements also reference others; for example,
CONT4 refers to FUN6.

FRETting and Formal Modelling 3/22



Mechanical Lung Ventilator: ABZ Case Study

Figure 1: The controller state machine is labelled as Fig 4.1 in the case study documentation.

FRETting and Formal Modelling 4/22



Formalisation with FRET

FRETting and Formal Modelling 5/22



The Formal Requirements Elicitation Tool (FRET)

FRET
▶ An open source tool for requirements

engineering developed by NASA
▶ Requirements are written in a structured

natural-language called FRETish
▶ FRET provides automated translations from

FRETish to CoCoSpec contracts, which can be
verified with the Kind2 model checker, and
Copilot runtime monitors

▶ Formalised requirements are indicated in green,
those in white have not been formalised, and a
red circle indicates invalid FRETish

FRETting and Formal Modelling 6/22



The Formal Requirements Elicitation Tool (FRET)

FRETting and Formal Modelling 7/22



Formalisation in FRETish - Methodology

Method
▶ We focused on the Functional and Controller requirements from the case study document.

In total, we formalised 121 requirements in FRET, out of 142 total natural-language
requirements in these categories.

▶ The formalisation was performed in stages, producing multiple versions of the
requirements set:
▶ v0.1 and v0.2 comprised the initial formalisation of the FUN requirements
▶ v0.3, v0.3.1, and v0.4 included revisions to better align with the case study documentation

where possible, and fix invalid variable names
▶ v0.5 and v0.5.1 formalised the Controller requirements
▶ v0.6 and v0.6.1 updated all requirements to use explicit timing conditions

▶ For traceability, we created FRETish requirements for all of the FUN and CONT
requirements, even those that could not be formalised

FRETting and Formal Modelling 8/22



Formalisation in FRETish - Examples

FUN.7
If the self-test fails, the user shall be warned that the system is out-of-service.
In addition, any other operations shall be not allowed
in SelfTestMode if selfTestFail System shall at the next timepoint
satisfy OutOfServiceWarning & FailSafeMode

FUN.22
In PCV mode it shall be possible to initiate with the push of a single button
a lung recruitment procedure, termed Recruitment Maneuver (RM)
in PCVMode when RMButton System shall at the next timepoint satisfy RM

CONT.19
If the SelfTest fails, the controller shall not be able to proceed to ventilation
in SelfTestMode if SelfTestFail Controller shall until off satisfy
!StandbyMode & !ventilating

CONT.32
The inspiration phase lasts until the inspiration peak is reached but no later
than the max_insp_time_psv is over. After that the expiration phase begins.
in PSVMode Controller shall until (P_insp >= MaxP_insp | inspClock >=
inspiratoryTime) satisfy inspiratoryPhase

FRETting and Formal Modelling 9/22



Formalisation in FRETish - Metrics

scope-option null = 49, in = 70, before = 1, after =1
condition-option null = 51, trigger (regular) = 70

timing-option
null/eventually =22, until =6, always=34, after=5, for
=4, next=50

parent-child 41 child requirements were assigned a parent requirement

Total Requirements
121 specified in FRETish, of 142 natural-language require-
ments

Fields
▶ FRET generates a Metric Temporal Logic (MTL) semantics for requirements using

template keys
▶ Each template key is a tuple of: [scope-option, condition-option, timing-option]
▶ We used the scope field wherever the requirements explicitly mentioned a syetm mode

FRETting and Formal Modelling 10/22



Formalisation in FRETish - Metrics

Timing
▶ Initially, we only included timing where it was explicitly mentioned in natural-language.
▶ On a second pass, we rechecked the timing conditions and added them explicitly.
▶ We usually used:

▶ always when the requirement had no conditions,
▶ eventually for events that would take an indeterminate amount of time (e.g. waiting for a

process to finish or for user input), and
▶ at the next timepoint for a response triggered by an event or button-press. We chose at

the next timepoint instead of immediately to represent the time taken to react to the trigger
and generate the response.

timing-option
null/eventually =22, until =6, always=34, after=5, for
=4, next=50

FRETting and Formal Modelling 11/22



Formalisation in FRETish - Analysis

Inconsistencies
▶ We encountered some cases where the Functional and Controller requirements didn’t quite

align, or where the language used wasn’t entirely consistent.
▶ The mode that comes after the self test has passed and before the system moves to PCV

or PSV mode is called “Standby Mode” in the FUN requirements, but is named
“VentilationOff” in the CONT requirements.

▶ CONT24 and FUN22 refer to the Recruitment Maneuver. FUN22 says the maneuver
should be initiated “with the push of a single button”, which seemed to imply that the
maneuver starts immediately when the button is pressed. However, CONT24 says that the
maneuver should start at the end of an inspiration phase (if it has been set by the GUI).

▶ Formalising requirements in a structured language like FRETish helps to find cases like
these where a requirement lacks important details.

FRETting and Formal Modelling 12/22



Formalisation in FRETish - Analysis

Unformalised and Invalid Requirements
▶ The unformalised requirements often related to capabilities of the overall system, rather

than specifiable behaviour
▶ e.g. FUN.1: “The system shall provide ventilation support for patients who require

mechanical ventilation and weigh more than 40 kg (88 lbs). Rationale: ventilation of children
and infants is more challenging”,

▶ Similarly, there was no meaningful way to capture the “Measured and displayed
parameters” requirements without a more detailed understanding of the sensors and GUI

▶ Some requirements were not written in a form that works in FRET. For example,
CONT.36 simply reads: “If the patient is in expiration phase:” , and rely on its three child
requirements to provide details

FRETting and Formal Modelling 13/22



Modelling in Event-B

FRETting and Formal Modelling 14/22



Modelling in Event-B

Overview
▶ Using the natural-language and FRETish requirements as a base, we constructed a model

of the ventilator system in Event-B
▶ The structure of the initial model was based on the “controller state machine” diagram

from the case study documentation.
▶ We then encoded the requirements into Event-B in different ways, depending on what they

specified. Some requirements were easily represented in a context, others became part of
the behavioural event specifications, and some became invariant specifications.

FRETting and Formal Modelling 15/22



Event-B Model
1 MACHINE mac00
2 SEES ctx00
3 VARIABLES mode
4 INVARIANTS typeof__mode: mode ∈ Mode

5 EVENTS
6 Initialisation
7 then act1: mode := PoweredOff

8 Event PowerOn =̂
9 when grd0_1: mode = PoweredOff

10 then act0_1: mode := StartUp

11 Event StartUpEnded =̂
12 when grd0_1: mode = StartUp
13 then act0_1: mode := SelfTest

14 Event ResumeVentilation =̂
15 when grd0_1: mode = SelfTest
16 then act0_1: mode := VentilationOff

17 Event SelfTestPassed =̂
18 when grd0_1: mode = SelfTest
19 then act0_1: mode := VentilationOff

20 Event StartPCV =̂
21 when grd0_1: mode = VentilationOff
22 ∨ mode = PSV
23 then act0_1: mode := PCV

24 Event StartPSV =̂
25 when grd0_1: mode = VentilationOff
26 ∨ mode = PCV
27 then act0_1: mode := PSV

28 Event StopVentilation =̂
29 when grd0_1: mode = PCV
30 ∨ mode = PSV
31 then act0_1: mode := VentilationOff

32 Event MoveToPSV =̂
33 when grd0_1: mode = PCV
34 then act0_1: mode := PSV

35 Event ApneaLag =̂
36 when grd0_1: mode = PSV
37 then act0_1: mode := PCV

38 Event Error =̂
39 when grd0_1: mode ̸= PoweredOff
40 grd0_2: mode ̸= Failsafe
41 then act0_1: mode := Failsafe

42 Event PowerOff =̂
43 when grd0_1: mode ̸= PoweredOff
44 then act0_1: mode := PoweredOff
45 END

FRETting and Formal Modelling 16/22



Event-B Model

1 CONTEXT ctx00
2 SETS Mode
3 CONSTANTS
4 Failsafe, PoweredOff, VentilationOff
5 PCV, PSV, SelfTest, StartUp
6 AXIOMS
7 axm0_1: partition(Mode, {StartUp},
8 {SelfTest}, {VentilationOff },
9 {PCV}, {PSV}, {Failsafe},

10 {PoweredOff })
11 END

Context for the abstract machine, capturing
FUN4/CONT1.

1 CONTEXT ctx01
2 EXTENDS ctx00
3 SETS ValveState, TestResult
4 CONSTANTS
5 ValveOpen, ValveClosed,
6 TestPassed, TestFailed, TestSkipped
7 AXIOMS
8 axm1_1: partition(ValveState,
9 {ValveOpen}, {ValveClosed})

10 axm1_2: partition(TestResult,
11 {TestPassed}, {TestFailed},
12 {TestSkipped})
13 END

Extending context to capture necessary sets
and constants related to the selftest process
(FUN6_1–6).

FRETting and Formal Modelling 17/22



Event-B Model

1 Event SelfTestPassedOrSkipped =̂
2 REFINES SelfTestPassed
3 any timePoweredOff
4 when
5 grd0_1: mode = SelfTest
6 grd1_1: testPowerSwitch ∈ {TestPassed,TestSkipped}
7 grd1_2: testLeaks ∈ {TestPassed,TestSkipped}
8 grd1_3: testFF12 ∈ {TestPassed,TestSkipped}
9 grd1_4: testPS_EXP ∈ {TestPassed,TestSkipped}

10 grd1_5: testOxygenSensor ∈ {TestPassed,TestSkipped}
11 grd1_6: testAlarms ∈ {TestPassed,TestSkipped}
12 grd1_7: timePoweredOff ∈ Z
13 grd1_8: timePoweredOff ≤ 15 ∧ is_new_patient = FALSE
14 then
15 act0_1: mode := VentilationOff
16 act1_1: in_valve := ValveClosed
17 act1_2: out_valve := ValveOpen
18 END

SelfTestPassedOrSkipped event after the
first refinement step. This captures require-
ments FUN10 and some of its children, along
with FUN6.

▶ FUN6: The system shall have a
self-test procedure that ensures the
system and its accessories are fully
functional and the alarms work

▶ FUN10.3: If “Resume Ventilation”
is selected, every step of the
selftest procedure FUN.6 can be
skipped or optionally rerun
individually.

▶ FUN10.4: Once all self-test steps
have been completed successfully,
it shall be possible to proceed to
the Standby Mode.

FRETting and Formal Modelling 18/22



Requirements in Event-B

This table outlines
how various
requirements were
captured in the
Event-B model

FRETish ID Context(s) Event(s) Invariant(s) Event-B File(s)
FUN4 ✓ ✓ mac00, ctx00
FUN5 ✓ mac01
FUN5_3 ✓ ✓ mac01
FUN6 ✓ ✓ mac00, mac01, ctx01
FUN6_1–FUN6_6 ✓ ✓ mac01, ctx01
FUN7 ✓ mac01
FUN10 ✓ mac00
FUN10_1 ✓ ✓ mac01, ctx01
FUN10_3–FUN10_6 ✓ mac01
FUN23 ✓ mac01
FUN27 ✓ mac01
CONT1 ✓ ✓ mac00, ctx00
CONT1_1 ✓ mac01
CONT1_3 ✓ mac01
CONT1_6 ✓ mac01
CONT3 ✓ mac00
CONT4 ✓ mac00
CONT12 ✓ mac00, mac01
CONT18 ✓ ✓ mac01, ctx01
CONT19 ✓ mac01
CONT38 ✓ mac01
CONT46 ✓ mac01

FRETting and Formal Modelling 19/22



Verification in Event-B

Proofs
▶ The Rodin Platform generates proof obligations for Event-B models, which can be

discharged automatically or interactively
▶ We were able to discharge all 79 proof obligations generated by Rodin automatically
▶ Some requirements were verified by construction. For example, adherence to the controller

state machine is obtained by constructing a model that evolves following the mode
changes indicated by the diagram. Thus, we consider requirements referring to this
sequence of states, e.g. FUN4 and CONT1, to be correct-by-construction.

▶ Other requirements are verified more directly, by inspecting the guard or action of the
event that corresponds to the behaviour described by that requirement.

FRETting and Formal Modelling 20/22



Discussion

▶ Expected many requirements to become machine invariants, but most basic requirements
become machine functionality and are not formally verifiable properties of the machine.

▶ Clarification of apparently inconsistent requirements difficult without domain experts,
sometimes unclear what is meant to happen.

▶ Wanted to capture functional and controller requirements (not GUI), but some functional
requirements mix types: “If the self-test mode fails, the user shall be warned that the
system is out-of-service. In addition, any other operations shall be not allowed.”

FRETting and Formal Modelling 21/22



Conclusion

Summary
▶ We used FRET and Event-B to formalise and model the requirements for the ABZ 2024

Mechanical Lung Ventilator case study
▶ We formalised the Functional and Controller requirements in FRETish, and described the

methodology we followed
▶ We used these requirements to construct a model of the ventilator system in Event-B, and

captured many of the requirements
▶ The FRET and Event-B artefacts are available at:

https://github.com/mariefarrell/abz2024 (link also included in the paper)

FRETting and Formal Modelling 22/22

https://github.com/mariefarrell/abz2024

	Formalisation with FRET
	Modelling in Event-B

