ABZ 2024

Modelling a Mechanical Lung Ventilation System using TASTD

Alex Rodrigue Ndouna, Marc Frappier

▶ ∢ ∃ ▶

- 2 Model Overview
- 3 Model Details
- 4 Validation and Verification
- 5 Specification Ambiguities and Flaws
- 6 Conclusion

E ► < E ►

- 2 Model Overview
- 3 Model Details
- 4 Validation and Verification
- **5** Specification Ambiguities and Flaws
 - 6 Conclusion

- Combination of state-transition diagrams à *la* state-charts, with process algebra operators à *la* CSP
- Graphical representation, Hierarchy, Orthogonality, Compositionality, Abstraction, Time
 - Transition triggered by an external event or a clock tick (Step)
- Tools : compiler cASTD, graphical editor eASTD
 - in development : invariant PO generation, Event-B Theory of ASTD
 - deprecated tools : ASTD2B, iASTD
- Case studies : ABZ Landing Gear, Mercedes, MLV, Cybersecurity (anomaly/intrusion detection)

★ ∃ ► < ∃ ►</p>

Automaton	Sequence			
Choice	Kleene Closure			
Synchronization	Flow			
Quantified choice and synchronization				
(Persistent) Guard	Interrupt			
(Persistent) Delay				
(Persistent) Timeout				
Timed Interrupt	Call			

UDS Université de Sherbrooke

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

A Simple Example

			<i>u</i> =1		<i>u</i> =2				
	Event	x	y	<i>z</i> 1	<i>z2</i>	y	<i>z</i> 1	z 2	<i>z3</i>
0	Init.	0	0	0	0	0	0	0	0
1	a(1)	1	1	1	1				
2	b(2)								
3	b(1)	2	2	2					
4	a(1)	3	3	3	2				
5	a(2)	4				1	1	1	
6	a(1)	5	4	1	1				
7	b(1)	6	5	2					
8	b(2)	7				2	2		
9	a(10)								1

イロト イヨト イヨト イヨト

UDS Université de Sherbrooke

2 Model Overview

3 Model Details

- 4 Validation and Verification
- **5** Specification Ambiguities and Flaws

6 Conclusion

What was Modeled

Figure 4.1: Controller state machine

Université de

イロト イヨト イヨト イヨト

- Decompose the system into small components
 - Complex states of the case study state machine
 - Sensors and actuators
- Specify and validate each component separately
- Intuition is that component composition is an alternative to the refinement à la Event-B

Sensors and Actuators

Figure: ASTD Controller composing sensors and actuators

Alex Rodrigue Ndouna, Marc Frappier

10/31

UDS Université de Sherbrooke

イロト イポト イヨト イヨト

Figure: Main ASTD of Mechanical Lung ventilator controller

Figure: Controller ASTD of Mechanical Lung ventilator

UDS Université de Sherbrooke

12/31

Alex Rodrigue Ndouna, Marc Frappier

Component	Variables
Main (root)	parameters, power_status
	error_value, paw_drop_in, last_inspiration_time,
Controller	move_to_pcv, mode, peak_pinsp, ve, rr,
	peep, fio2, vtidal, updated_parameters
StartUp	<pre>adc_timeout, pressure_sensor_timeout, error, processes_count</pre>
InspirationPhaseEnd	inspiration_phase_timer
Initialization	attempt, status
CheckSensors	pressure_sensor_valid_response
PCVModeExpiration	its_trigger_window
PSVModeExpiration	its_trigger_window, inspiration_time
LaunchLoop	enable_loop

Table: Shared variable by components

ヨト イヨト

Université de Sherbrooke

ASTD	Requirements	
Controller	CONT.1, CONT.2, CONT.3, CONT.4, CONT.5, CONT.6,	
	CONT.7, CONT.8, CONT.9, CONT.10	
StartUp	CONT.12, CONT.13, CONT.14, CONT.15, CONT.16	
SelfTest	CONT.17, CONT.18, CONT.19	
VentilationOff	CONT.38	
PCVMode	CONT.20, CONT.21, CONT.22, CONT.23, CONT.24, CONT.25,	
	CONT.26, CONT.27, CONT.28, CONT.39, CONT.40, CONT.41,	
	CONT.42, CONT.43, CONT.44, CONT.45	
	CONT.29, CONT.30, CONT.31, CONT.32, CONT.33, CONT.34,	
PSVMode	CONT.35, CONT.36, CONT.37, CONT.39, CONT.40, CONT.41,	
	CONT.42, CONT.43, CONT.44, CONT.45	
FailSafe	CONT.38	
Main (root)	CONT.11, CONT.38	

Table: Cross-reference between ASTDs and requirements for mechanical lung

Alex Rodrigue Ndouna, Marc Frappier

A B A A B A

Image: Image:

Université de Sherbrooke

- Modeling time : 80 h
- Validation time : 40 h
- 160 ASTDs

73 automaton	28 call
5 sequence	15 closure
13 guard	7 choice
5 synchronisation or interleaving	4 flow
2 delay	8 timeout

UDS Université de Sherbrooke

イロト イヨト イヨト イヨト

2 Model Overview

- 4 Validation and Verification
- **5** Specification Ambiguities and Flaws
 - 6 Conclusion

Figure: Automaton ASTD PCVModeSensors

< □ > < 同 > < 回 > < 回 > < 回 >

Figure: Automaton ASTD LoopGetPAW

Figure: Automaton ASTD Main

UDS Université de Sherbrooke

19/31

イロト イヨト イヨト イヨト

Controller ASTD

Figure: StartFlow ASTD

イロト イポト イヨト イヨト

Alex Rodrigue Ndouna, Marc Frappier

ABZ 2024

Modelling Time requirements(CONT.22)

Figure: PCVModeInspiration ASTD

Alex Rodrigue Ndouna, Marc Frappier

< □ > < 同 > < 回 > < 回 > < 回 >

Figure: DetectExpiratoryPauseOff ASTD

- 2 Model Overview
- 3 Model Details
- 4 Validation and Verification
- **5** Specification Ambiguities and Flaws
- 6 Conclusion

- use interactive animation of the specification with the executable code generated by the cASTD compiler
- compilation is automatic, and no human modification is necessary on generated code
- We have implemented 12 test cases
 - 5 PSV mode scenarios
 - 6 PCV mode scenarios
 - 1 start-up scenario up to VentilationOff step

- Large number of ASTDs
- Compiler cASTD fails to generate code for the whole specification (Java memory overflow)
- Generated code larger than the Mercedes Case Study of ABZ2020
- Inefficient code generation (lack of modularity, code duplication, long prefix names to access nested ASTD attributes, etc)

- 2 Model Overview
- 3 Model Details
- 4 Validation and Verification

5 Specification Ambiguities and Flaws

6 Conclusion

★ ∃ ► < ∃ ►</p>

Université de Sherbrooke

Specification Ambiguities and Flaws

- Very few (small) issues
- Controller requirements : ambiguity or lack of information
- SelfTest step
 - FUN.6, CONT.17, CONT.18, CONT.19
 - no indication on how the controller receives self-tests results
- Verification of sensor communication
 - CONT.15 states that a maximum of 5 connection attempts must be made with the pressure sensor
 - after 5 attempts, assume that that there is an error and the controller switches to FailSafe mode
 - no indication of how long to wait before attempting a new connection.
 - Same issue with CONT.16 initialize external ADC
- We defined them as system parameters

- 2 Model Overview
- 3 Model Details
- 4 Validation and Verification
- **5** Specification Ambiguities and Flaws

- Complete model of the controller component
- Reuse specification style of Mercedes case study ABZ2O20
- Extensive use of modularity / decomposition
- Validation by animation using the compiler generated implementation of the specification
- Compiler needs to be optimized to handle larger (modular) specification

4 3 4 3 4 3 4

- Optimise the compiler
- Develop verification techniques
 - invariant proof obligations (done for 4 operators)
 - temporal constraints (CCSL, reachability, leads to)
 - use Event-B ASTD metamodel
- compare ASTD spec with Event-B spec of Amel Mammar
 - evaluate impact of modularity on proving
 - compare how properties can be specified and verified

メロト メポト メヨト メヨト

Alex Rodrigue Ndouna, Marc Frappier