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An Overview of TASTD

Combination of state-transition diagrams à la state-charts, with
process algebra operators à la CSP
Graphical representation, Hierarchy, Orthogonality, Compositionality,
Abstraction, Time

Transition triggered by an external event or a clock tick (Step)
Tools : compiler cASTD, graphical editor eASTD

in development : invariant PO generation, Event-B Theory of ASTD
deprecated tools : ASTD2B, iASTD

Case studies : ABZ Landing Gear, Mercedes, MLV, Cybersecurity
(anomaly/intrusion detection)
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TASTD Operators

Automaton Sequence
Choice Kleene Closure
Synchronization Flow
Quantified choice and synchronization
(Persistent) Guard Interrupt
(Persistent) Delay
(Persistent) Timeout
Timed Interrupt Call
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A Simple Example

Translating ASTDs into high-level programming languages ACM Transactions on Programming Languages and Systems, Vol 42, No 2

B, ⫴ u : T, var x : int = 0 { x := x+1}

1
a(u) [u < 10] / { z2 := z2 + 1}

2

C, *,   var y : int = 0    { y := y+1 }

D,    var z1,z2 : int = 0   {z1 := z1 + 1}

b(u)

E,    var z3 : int = 0

A, ⋓

3 a(?v : int) [ v >= 10 ] / { z3 := z3 + 1}

T = {1, 2, 3, 4}

(a)

u=1 u=2
Event x y z1 z2 y z1 z2 z3

0 Init. 0 0 0 0 0 0 0 0
1 a(1) 1 1 1 1
2 b(2)
3 b(1) 2 2 2
4 a(1) 3 3 3 2
5 a(2) 4 1 1 1
6 a(1) 5 4 1 1
7 b(1) 6 5 2
8 b(2) 7 2 2
9 a(10) 1

(b)

Fig. 2. Example of ASTD specification and execution trace

2.1 A Simple Example

Fig. 2(a) describes an ASTD A of type �ow (d). This �ow operator combines two sub-ASTDs B and E as follows. When
an event is received, both B and E try to execute it, independently. If they succeed, they each make an internal transition,
irrespective of the capability of the other (ie, there is no synchronisation between B and E). This operator is similar to
an AND state in Statecharts.
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What was Modeled

1 Introduction

the ventilator stops the pressure support, thus allowing exhalation. If a new inspiratory phase
is not detected within a certain amount of time (apnea lag), the ventilator will automatically
switch to the PCV mode because it is assumed that the patient is not able to breathe alone.

The ventilator allows the air to enter/exit through two valves, i.e., an input valve and an
output valve. When the ventilator is not running, the valves are set to safe mode: the input
valve is closed and the output valve is opened. In this configuration, the ventilator does not
prevent breathing thanks to some relief valves.

When the inspiration starts, the input valve is opened and the output valve is closed, while
during the expiration the input valve is closed and the output valve is opened. Both in PCV
and PSV mode, inspiratory pause, expiratory pause, and recruitment maneuver are allowed by
user request. Inspiratory/Expiratory pause consists in closing the input and output valves of
the ventilator respectively after the inspiration and expiration phases. The inspiratory pause
allows measuring the pressure reached inside the alveoli at the end of the inspiratory cycle,
while the expiratory pause allows measuring the residual pressure to check possible obstruction
in the exhalation channel. The recruitment maneuver is an emergency procedure required after
intubation, and it consists of prolonged lung inflation as necessary to reactivate the alveoli
immediately; during this maneuver, the input valve is opened and the output valve is closed.

The high-level software architecture, shown in Figure 1.1, illustrates the communication
among the software components: graphical user interface (GUI) and controller. The GUI is
a touchscreen panel that displays the information needed to check the respiratory condition,
allows parameter setting, and displays ventilation parameters and alarm settings. When the
controller receives operator input from the GUI, it communicates with the valve controllers,
serial interfaces, and other subcomponents and sends them commands.

Before starting the ventilation, the ventilator controller passed through three phases. The
start-up in which the controller is initialized with default parameters, self-test which ensures
that the hardware is fully functional, and ventilation o↵ in which the controller is ready for
ventilation when requested. If during ventilation and other phases the controller detects a
severe condition that prevents the ventilator to sustain the ventilation, the machine is brought
to fail-safe mode (in valve closed and out valve open).

Figure 1.1: The high-level software architecture

1.2 Structure of the document

This document is structured in the following chapters:

Chapter 2 presents the general specification of the ventilator: functional requirements,
values and ranges of parameters and interfaces between components.

Chapter 3 presents the specifications of the GUI, which is responsible for receiving infor-
mation from the user and displaying information to the user.

Chapter 4 presents the specification of the controller, which is responsible for controlling
the phase of the respiratory cycle (inhalation, pause, exhalation) by operating on the
valves and receiving information from sensors and commands from the GUI.

Chapter 5 presents the specification of the alarm system which is responsible for raising
alarms.

2

4 Controller Requirements

powerOn start-up ended

powerOff

error

Start-up selftestPassed
or resume ventilation

powerOff

error

SelfTest

startPCV

startPSVpowerOff

VentilationOff moveToPSV

stopVentilation

powerOff

error
PCV

apneaLag

stopVentilation

powerOff

error

PSV

powerOff

FailSafe

Figure 4.1: Controller state machine

ID Requirement / Rationale Input Ref.

CONT.1 The controller shall implement the following modes (see
Figure 4.1):

FUN.4

CONT.1.1 Start-up Mode: In start-up mode the controller initial-
izes itself with default configuration parameters (if any),
checks the system memory and the communication of the
controller with the sensors and valves, as well as between
the controller and the GUI. Start-up mode is completed
once the required activities have been completed.

FUN.5

CONT.1.2 Self-Test Mode: in the Self Test mode the controller al-
lows the GUI to do all the operations necessary to perform
the self-test.

FUN.6

CONT.1.3 VentilationO↵: In ventilation o↵, the machine does not
ventilate, the in valve is closed and the out valve is
opened.

CONT.1.4 Pressure Controlled Ventilation Mode: Pressure Con-
trolled Ventilation mode is used when patients have no
spontaneous respiration.

FUN.19

CONT.1.5 Pressure Support Ventilation Mode: Pressure Support
Ventilation mode is used when the patients are able to
initiate every breath and the machine supports them.

FUN.24

CONT.1.6 Fail-safe: the controller forces input and output valves
to their de-energized states (in valve close and out valve
open)

Start-up Mode: In start-up mode the controller initializes itself with default configuration
parameters.

CONT.2 The transition to Start-up Mode shall be allowed by push-
ing the power button located on the back side of the ven-
tilator unit to turn it on.

FUN.5

35
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How was it Modeled

Decompose the system into small components
Complex states of the case study state machine
Sensors and actuators

Specify and validate each component separately
Intuition is that component composition is an alternative to the
refinement à la Event-B
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Sensors and Actuators

Ψ Controller

Ψ Actuators

Airway pressure

Peak 𝑃𝑖𝑛𝑠𝑝

Measured
Respiratory Rate

Temperature

𝑉𝐸

𝑉𝑡𝑖𝑑𝑎𝑙

Oxygen
concentration

PEEP

Battery 
power

Battery 
charge level

Remaining
time for RM

Current Status
of the 

ventilator

OUT valve

IN valve

Value of the 
LED

||| Sensors

𝑅𝑅𝑃𝐶𝑉 𝐼: 𝐸𝑃𝐶𝑉

𝑃𝑖𝑛𝑠𝑝_𝑃𝐶𝑉

𝐼𝑇𝑆𝑃𝐶𝑉

𝑃𝑖𝑛𝑠𝑝_𝑃𝑆𝑉

𝐼𝑇𝑆𝑃𝑆𝑉 𝑅𝑅𝐴𝑃

ETSApnea lag

Min PEEP

Max PEEP

𝑃𝑖𝑛𝑠𝑝_𝐴𝑃

𝑀𝑎𝑥 𝑃𝑖𝑛𝑠𝑝

𝑀𝑖𝑛 𝑃𝑖𝑛𝑠𝑝

𝑀𝑎𝑥 𝑉𝑡𝑖𝑑𝑎𝑙_𝑒𝑥𝑝

𝑀𝑖𝑛 𝑉𝑡𝑖𝑑𝑎𝑙_𝑒𝑥𝑝 𝑀𝑎𝑥 𝑉𝑡𝑖𝑑𝑎𝑙_𝑖𝑛𝑠𝑝

𝑀𝑖𝑛 𝑉𝑡𝑖𝑑𝑎𝑙_𝑖𝑛𝑠𝑝

𝑀𝑎𝑥 𝑉𝐸

𝑀𝑖𝑛 𝑉𝐸

𝑀𝑖𝑛 𝑉𝐸 Max RR

Min RR

Start PCV

Stop PCV/PSV

Start PSV

Expiratory
Pause On

Expiratory
Pause Off

Inspiratory
Pause On

Inspiratory Pause 
Off

Recruitment 
Maneuver on

Recruitment 
Maneuver off

Pressure Recruitment 
Maneuver

Maximum RM 
Time

digital spirometer
flow sensor

Electronic oxygen
sensor

Differential
pressure sensor

PEEP Gas Pressure

Temperature Battery charge 
level

Power supply type

Fan Tachometer

Figure: ASTD Controller composing sensors and actuators
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Main ASTD

Main, aut

CControllerON
power_on

Figure: Main ASTD of Mechanical Lung ventilator controller
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Controller ASTD

Controller, Ψ

Actuators Sensors

StartFlow, →

Startup

LaunchSelfTest, →

GoToVentilationOff, |

SelfTest

ResumeVentilation

ChooseMode, aut

VentilationOff

PSVMode

PCVMode

StepStep

Figure: Controller ASTD of Mechanical Lung ventilator
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Communication with shared variables

Component Variables
Main (root) parameters, power_status

Controller
error_value, paw_drop_in, last_inspiration_time,

move_to_pcv, mode, peak_pinsp, ve, rr,
peep, fio2, vtidal, updated_parameters

StartUp adc_timeout, pressure_sensor_timeout, error, processes_count
InspirationPhaseEnd inspiration_phase_timer

Initialization attempt, status
CheckSensors pressure_sensor_valid_response

PCVModeExpiration its_trigger_window
PSVModeExpiration its_trigger_window, inspiration_time

LaunchLoop enable_loop

Table: Shared variable by components
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Formalization of the requirements

ASTD Requirements

Controller CONT.1, CONT.2, CONT.3, CONT.4, CONT.5, CONT.6,
CONT.7, CONT.8, CONT.9, CONT.10

StartUp CONT.12, CONT.13, CONT.14, CONT.15, CONT.16
SelfTest CONT.17, CONT.18, CONT.19

VentilationOff CONT.38

PCVMode
CONT.20, CONT.21, CONT.22, CONT.23, CONT.24, CONT.25,
CONT.26, CONT.27, CONT.28, CONT.39, CONT.40, CONT.41,

CONT.42, CONT.43, CONT.44, CONT.45

PSVMode
CONT.29, CONT.30, CONT.31, CONT.32, CONT.33, CONT.34,
CONT.35, CONT.36, CONT.37, CONT.39, CONT.40, CONT.41,

CONT.42, CONT.43, CONT.44, CONT.45
FailSafe CONT.38

Main (root) CONT.11, CONT.38

Table: Cross-reference between ASTDs and requirements for mechanical lung
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Statistics

Modeling time : 80 h
Validation time : 40 h
160 ASTDs

73 automaton 28 call
5 sequence 15 closure
13 guard 7 choice
5 synchronisation or interleaving 4 flow
2 delay 8 timeout
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Sensors ASTD

PCVModeSensors, aut

SO

set_rr_pcv(?value:float)/
{updated_parameters.rr_pcv=value;}

set_ie_pcv(?value:float)/
{updated_parameters.ie_pcv=value;}

set_its_pcv(?value:float)/
{updated_parameters.its_pcv=value;}

set_pinsp_pcv(?value:float)/
{updated_parameters.pinsp_pcv=value;}

Figure: Automaton ASTD PCVModeSensors
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Actuators ASTD

LoopGetPAW, GetPAW, aut

S1SO get_paw Step /{cout << "PAW value = " 

<<  parameters.paw<<  endl;}
S2

Figure: Automaton ASTD LoopGetPAW
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Main ASTD

Main, aut

ON
power_on/{power_status=

‘on’;}

Controller(parameters, 
power_status)

Call

Figure: Automaton ASTD Main
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Controller ASTD
StartFlow, →

Startup(parameters, 

update_parameters)

LaunchSelfTest, →

GoToVentilationOff, |

SelfTest(parameters)

ChooseMode, aut

VentilationOff(parameters)

PSVMode(parameters, 

paw_drop_in, move_to_pcv, 
last_inspiration_time,…)

PCVMode(parameters, paw_drop_in, 

inspiration_time, updated_parameters, 
go_to_psv_from_pcv)

Call

Call
ResumeVentilation, aut

Call

Call

Call

S0 S1resume_ventilation

start_psv/{

parameters.start_psv=true; 
parameters.start_pcv=false;

mode=‘psv’;}

start_pcv/{

parameters.start_psv=false; 
parameters.start_pcv=true;

mode=‘psv’;}

stop_psv/{

parameters.in_valve=‘close’; 
parameters.out_valve=‘open’;}

stop_pcv/{

parameters.in_valve=‘close’; 
parameters.out_valve=‘open’;}

Step[move_to_pcv]/{inspi

ration_time=60*parameters.ie_pcv/
(parameters.rr_pcv*(1+parameters.i

e_pcv));}

Step[go_to_psv_from_pcv]
/{go_to_psv_from_pcv=false;}

Figure: StartFlow ASTD
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Modelling Time requirements(CONT.22)

PCVModeInspiration, Interrupt

InspirationPhaseEnd(parameters, expiratory_time, 

go_to_psv_from_pcv)

CheckPaw, aut

PCVInspirationPhaseStart, Delay(inspiration_time)

S0 S1
set_paw(?value:float)

[value>parameters.max_pinsp]

CallPCVModeInspirationPhaseEnd, Call

Interrupt

Figure: PCVModeInspiration ASTD
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Modelling Time requirements(CONT.42.2)

DetectExpiratoryPauseOff, Timeout(parameters.max_exp_pause)

StopExpiratoryPause, aut
CheckExpiratoryPauseOff, aut

S0S0 S1
expiratory_pause_off

/{parameters=updated_parameters}

Figure: DetectExpiratoryPauseOff ASTD
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Validation and Verification

use interactive animation of the specification with the executable code
generated by the cASTD compiler
compilation is automatic, and no human modification is necessary on
generated code
We have implemented 12 test cases

5 PSV mode scenarios
6 PCV mode scenarios
1 start-up scenario up to VentilationOff step
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Validation Issues

Large number of ASTDs
Compiler cASTD fails to generate code for the whole specification
(Java memory overflow)
Generated code larger than the Mercedes Case Study of ABZ2020
Inefficient code generation (lack of modularity, code duplication, long
prefix names to access nested ASTD attributes, etc)
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Specification Ambiguities and Flaws

Very few (small) issues
Controller requirements : ambiguity or lack of information
SelfTest step

FUN.6, CONT.17, CONT.18, CONT.19
no indication on how the controller receives self-tests results

Verification of sensor communication
CONT.15 states that a maximum of 5 connection attempts must be
made with the pressure sensor
after 5 attempts, assume that that there is an error and the controller
switches to FailSafe mode
no indication of how long to wait before attempting a new connection.
Same issue with CONT.16 - initialize external ADC

We defined them as system parameters
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Conclusion

Complete model of the controller component
Reuse specification style of Mercedes case study ABZ2O20
Extensive use of modularity / decomposition
Validation by animation using the compiler generated implementation
of the specification
Compiler needs to be optimized to handle larger (modular)
specification
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Future Work

Optimise the compiler
Develop verification techniques

invariant proof obligations (done for 4 operators)
temporal constraints (CCSL, reachability, leads to)
use Event-B ASTD metamodel

compare ASTD spec with Event-B spec of Amel Mammar
evaluate impact of modularity on proving
compare how properties can be specified and verified
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Questions
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